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A B S T R A C T

In this paper, the problem of controlling the attitude of a CubeSat in low Earth orbit using only the
environmental torques is considered. The CubeSat is equipped with a Drag Maneuvering Device (DMD) that
enables the spacecraft to modulate its experienced aerodynamic and gravity gradient torques. An adaptive
controller is designed to achieve attitude tracking of the spacecraft in the presence of uncertain parameters
such as the atmospheric density, drag and lift coefficients, and the time-varying location of the Center of
Mass (CoM). The proposed controller also accounts for modeling inaccuracy of the inertia matrix of the
spacecraft. A Lyapunov-based analysis is used to prove that the quaternion-based attitude trajectory tracking
error is uniformly ultimately bounded. The designed controller is also examined through numerical simulations
for a spacecraft with time-varying uncertain drag, lift coefficients and CoM location parameters and the
NRLMSISE-00 model for the atmospheric density.
1. Introduction

Missions involving small satellites in Low Earth Orbit (LEO) have
become popular with the introduction of the CubeSat standard [1].
The limited volume available in these satellites has increased the need
to develop propellant-less strategies for orbit and attitude control,
usually exploiting the interaction of the spacecraft with the low density
atmosphere [2–6]. The idea of using the drag force for relative orbit
maneuvers was first introduced in [7]. Since then, a wide variety of
control strategies have been developed using both aerodynamic lift and
drag as the only control means [8–11]. To exploit such forces, dedicated
surfaces are installed on the spacecraft to increase its area-to-mass ratio,
often locating the center of pressure at distances with respect to the
Center of Mass (CoM) such that significant torques can be applied.
This has led to the design of CubeSats that can alter the aerodynamic
torques by actively modulating the length and angle of drag surfaces.
Such designs often involve several ultra-lightweight surfaces with two
or more degrees of freedom [3,4] so that the inertia matrix does not
change significantly and its time derivative can be neglected in the
attitude equations of motion.

The University of Florida ADvanced Autonomous Multiple Space-
craft laboratory (ADAMUS) has designed the Drag Maneuvering Device
(DMD), formerly Drag De-Orbit Device (D3) [12], and has been study-
ing its capabilities for spacecraft controlled re-entry [13,14], spacecraft
relative maneuvering [15,16] and attitude control [17–19] by using
its four dedicated surfaces to modulate the experienced environmental
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forces and torques on a CubeSat. The design of the DMD provides
a CubeSat with four repeatedly extendable/retractable surfaces offset
90 degrees from each other, and with 20 degrees inclination with
respect to the anti-ram face of the CubeSat. The DMD has passed
through several prototype iterations, and incorporates only one degree
of freedom for each surface, which makes it easier to build and less
susceptible to failure of moving parts. It is also capable of altering the
CubeSat inertia matrix to make use of the aerodynamic and the gravity
gradient torques.

Previous work in [19] presented the design of an integral concurrent
learning-based control method to provide simultaneous state tracking
and on-line estimation of uncertain parameters. These uncertain param-
eters included the average drag coefficient and atmospheric density,
and the time-varying CoM location and inertia matrix were assumed
known. However, in real operation, inaccurate knowledge of these
two parameters could reduce the performance or even destabilize the
system. Controllers that actively change the location of the CoM have
been proposed for spacecraft attitude control in [20] using PID, linear
quadratic regulator and partial feedback linearization techniques, and
the developed control laws computed the location of the CoM so that
the desired control torques can be produced. The results in [20] demon-
strate how the CoM location can influence the overall performance of
the system, making it necessary to account for uncertainties in this
parameter. The problem of having uncertainties in the CoM location has
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Fig. 1. Drag Maneuvering Device schematic.

been addressed in [21] for unmanned aerial vehicles using an adaptive
controller for constant CoM. In [22], adaptive control techniques have
been used to develop a propellant-based spacecraft attitude controller
that considers time-dependent or input-dependent inertia parameters to
account for deployable appendages or mass loss, respectively.

In this paper, the designed controller incorporates uncertainties in
the CoM location and time-varying drag and lift coefficients, as well
as partial knowledge of the inertia matrix of a DMD-equipped CubeSat.
The cost for adding this adaptation capability is that the on-line param-
eter estimation feature is lost compared to [19]. However, the proposed
controller provides improved robustness to uncertainties in parameters
that are inaccurate and time-varying. The contribution of this paper
is the design of an adaptive controller that exploits environmental
torques for spacecraft attitude maneuvers in the presence of uncer-
tainties in the time-varying CoM location, atmospheric density, drag
and lift coefficients with guaranteed bounded state tracking through a
Lyapunov-based stability analysis.

The remainder of this paper is organized as follows. Section 2 de-
scribes the DMD device, and Section 3 presents the spacecraft attitude
dynamics. Section 4 describes the control objective and the control
development. Section 5 shows the corresponding Lyapunov-based sta-
bility analysis. Sections 6 and 7 present the numerical simulation and
conclusion, respectively.

2. Drag maneuvering device

In this paper, the controller design is based on the DMD developed
in [12]. It consists of four repeatedly extendable/retractable 3.7 m long
and 0.038 m width surfaces offset 90 deg and inclined 20 deg with
respect to the anti-ram face of the spacecraft, as depicted in Fig. 1.

The surfaces are fabricated from strips of austenitic 316 stainless
steel shim stock with 0.0762 mm thickness, weighting approximately
95 g. Given the weight of each boom and their lengths, significant
changes in aerodynamic and gravity gradient torques can be created
by independently modulating the length of each DMD surface. When
the surfaces are fully extended, the DMD provides an increase of the
cross-wind surface area up to 0.5 m2.

3. Attitude dynamics

3.1. Reference frames

The Earth-Centered-Inertial (ECI) reference frame is considered the
inertial reference frame. The orbital coordinate system is defined as:
origin located at the CoM of the spacecraft. The unit vector �̂�𝟑 points
from the center of the Earth toward the spacecraft CoM, the unit
vector �̂�𝟐 is aligned with the orbit angular momentum, and the unit
vector �̂�𝟏 completes a right-hand Cartesian coordinate system. The
body coordinate system is defined with the origin located at the CoM
of the spacecraft, and the unit vectors �̂�𝟏, �̂�𝟐 and �̂�𝟑 aligned with the
longitudinal, lateral, and vertical axes of the spacecraft, respectively,
as depicted in Fig. 2.
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Fig. 2. Coordinate systems.

3.2. Equation of motion

The spacecraft attitude dynamics are given by

�̇�𝝎 + 𝐽 �̇� + 𝜔×𝐽𝝎 = 𝝉𝑫 + 𝝉𝑳 + 𝝉𝑮𝑮 + 𝜹, (1)

where 𝝎 ∈ R3 is the angular velocity of the body with respect to
the inertial reference frame, 𝐽 ∈ R3×3 is the inertia matrix of the
spacecraft, 𝝉𝑮𝑮 ∈ R3 is the gravity gradient torque, and 𝝉𝑫 , 𝝉𝑳 ∈ R3

are the aerodynamic torques due to drag and lift, respectively. The
vector 𝜹 ∈ R3 denotes disturbances to the system (e.g., magnetic
torques). The skew symmetric matrix 𝑎× ∈ R3×3 for a vector 𝒂 ≜
[𝑎1 𝑎2 𝑎3]𝑇 ∈ R3 is defined as

𝑎× ≜
⎡

⎢

⎢

⎣

0 −𝑎3 𝑎2
𝑎3 0 −𝑎1
−𝑎2 𝑎1 0

⎤

⎥

⎥

⎦

. (2)

Remark 1. The design of the DMD considers surfaces made of austenitic
stainless steel, which is considered a non-magnetic material [12].
Therefore, the DMD surfaces are not expected to generate magnetic
hysteresis torques. An estimate of the maximum remaining magnetic
moment of the spacecraft can be computed following the procedure
in [23] under the guidelines in [24] for a class II spacecraft.

Assumption 1. The disturbance torque 𝜹 can be upper bounded as
‖𝜹‖ ≤ 𝜁0, where 𝜁0 ∈ R>0 is a known bounding constant. □

3.3. Quaternion representation of the spacecraft orientation

The quaternion 𝒒 ∈ R4 represents the rotation of the spacecraft
body with respect to an inertial frame, expressed in the body coordinate
system as [25]

𝒒 ≜
[

𝑞0 𝒒𝑇𝒗
]𝑇 , (3)

where 𝑞0 ∈ R and 𝒒𝒗 = [𝑞1 𝑞2 𝑞3]𝑇 ∈ R3. The quaternion 𝒒 has the
property

𝒒𝑇𝒗 𝒒𝒗 + 𝑞
2
0 = 1. (4)

The rotational kinematics of the spacecraft is defined as

�̇�𝒗 ≜ 1
2
(

𝑞𝑣
× + 𝑞03

)

𝝎 (5)

�̇�0 ≜ −1
2
𝒒𝑇𝒗𝝎, (6)

where 3 ∈ R3×3 denotes the identity matrix. To specify a desired
time-varying attitude trajectory, we also define a desired quaternion
𝒒𝒅 ∈ R4 as

𝒒 ≜
[

𝑞 𝒒𝑇
]𝑇 , (7)
𝒅 0𝑑 𝒗𝒅
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where 𝑞0𝑑 ∈ R and 𝒒𝒗𝒅 ∈ R3. Using (5) and (6), the angular velocity
𝝎 can be expressed in terms of 𝒒 as

𝝎 = 2
(

𝑞0�̇�𝒗 − 𝒒𝒗𝑞0
)

− 2𝑞𝑣×�̇�𝒗, (8)

and the desired angular velocity of the body 𝝎𝒅 with respect to the
inertial frame can be expressed in the desired body coordinate system
as

𝝎𝒅 = 2
(

𝑞0𝑑 �̇�𝒗𝒅 − 𝒒𝒗𝒅𝑞0𝑑
)

− 2𝑞𝑣𝑑×�̇�𝒗𝒅 . (9)

For simplicity, the attitude dynamics will be expressed in the body
coordinate system in the subsequent stability analysis. Therefore, it
is useful to define the matrices that represent the actual and desired
orientation of the body with respect to the inertial frame, which are
denoted by 𝑅 ∈ 𝑆𝑂(3) and 𝑅𝑑 ∈ 𝑆𝑂(3), respectively, as [25]

𝑅 ≜
(

𝑞20 − 𝒒𝑇𝒗 𝒒𝒗
)

3 + 2𝒒𝒗𝒒𝑇𝒗 − 2𝑞0𝑞𝑣×, (10)

𝑅𝑑 ≜
(

𝑞20𝑑 − 𝒒𝑇𝒗𝒅𝒒𝒗𝒅
)

3 + 2𝒒𝒗𝒅𝒒𝑇𝒗𝒅 − 2𝑞0𝑑𝑞𝑣𝑑×. (11)

The error quaternion 𝒆 ≜ [𝑒0 𝒆𝑇𝒗 ]
𝑇 ∈ R4 that represents the mismatch

between 𝒒 and 𝒒𝒅 is defined as

𝒆𝒗 ≜ 𝑞0𝑑𝒒𝒗 − 𝑞0𝒒𝒗𝒅 + 𝑞𝑣×𝒒𝒗𝒅 , (12)

𝑒0 ≜ 𝑞0𝑞0𝑑 + 𝒒𝑇𝒗 𝒒𝒗𝒅 , (13)

which satisfies the property

𝒆𝑇𝒗 𝒆𝒗 + 𝑒
2
0 = 1, (14)

and obeys the error quaternion kinematics [25]

�̇�𝒗 = 1
2
(

𝑒𝑣
× + 𝑒03

)

�̃�, (15)

�̇�0 = −1
2
𝒆𝑇𝒗 �̃�. (16)

n (15) and (16), �̃� ∈ R3 denotes the error in the angular velocity of
he spacecraft

̃ ≜ 𝝎 − 𝑅𝝎𝒅 , (17)

here 𝑅 ∈ R3×3 is the rotation matrix used to express 𝝎𝒅 in the body
oordinate system, and is defined as

̃ ≜ 𝑅𝑅𝑇𝑑 =
(

𝑒20 − 𝒆𝑇𝒗 𝒆𝒗
)

3 + 2𝒆𝒗𝒆𝑇𝒗 − 2𝑒0𝑒𝑣×. (18)

.4. Aerodynamic torques

A spacecraft in LEO experiences drag and lift forces on every surface
xposed to the incoming atmosphere particles. In the case of a DMD-
quipped CubeSat, the surface areas of the DMD are significantly larger
han those of the body so that the latter can be neglected. The drag
orce 𝑭𝑫,𝒋 ∈ R3 and the lift force 𝑭𝑳,𝒋 ∈ R3 are assumed to act on
he geometric center of each DMD surface and can be expressed as

𝑫,𝒋 = −
𝜌𝑤𝑏𝐿𝑗𝐶𝐷,𝑗

2
‖𝑽 ⊥,𝑗‖

2 𝑽 𝒓
‖𝑽 𝒓‖

(19)

and

𝑭𝑳,𝒋 = −
𝜌𝑤𝑏𝐿𝑗𝐶𝐿,𝑗

2
‖𝑽 ⊥,𝑗‖

2
(

𝑽 𝒓
‖𝑽 𝒓‖

× 𝒏𝒋 ×
𝑽 𝒓

‖𝑽 𝒓‖

)

. (20)

In (19) and (20), the subscript 𝑗 indicates the 𝑗th DMD surface,
𝜌 ∈ R is the atmospheric density, 𝐶𝐷,𝑗 , 𝐶𝐿,𝑗 , 𝑤𝑏, 𝐿𝑗 ∈ R are drag
and lift coefficients, and the width and length of the corresponding
DMD surface, respectively. The spacecraft–atmosphere relative velocity
vector 𝑽 𝒓 ∈ R3, assuming that the atmosphere co-rotates with the
Earth, is defined as

𝑽 𝒓 ≜ �̇�𝒄 − 𝜔×
⊕𝑹𝒄 , (21)

where 𝝎⊕ ∈ R3 is the angular velocity of the Earth, and 𝑹𝒄 , �̇�𝒄 ∈ R3

represent the ECI position and velocity of the spacecraft, respectively.
The vector 𝑛𝑗 ∈ R3 is a unit vector that represents the direction normal
to the 𝑗th DMD surface and 𝑽 ⊥,𝒋 ≜ 𝑽 𝒓 ⋅ 𝒏𝒋 .
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Remark 2. Density models with different levels of accuracy have been
developed throughout the years. The U.S Standard [26] and Harris-
Priester [27] models are altitude-based theoretical models that provide
values for the atmospheric density based on the spacecraft altitude at
a low computational cost. More accurate and complex models, such
as the NRLMSISE-00 [28] also incorporate data gathered from real
missions to provide atmospheric density values dependent on the date,
time, spacecraft position as well as solar and geomagnetic indices.
However, more complex density models require significantly higher
computational effort and forecasts of solar and geomagnetic activity
that are affected by additional uncertainties. Given the multiple sources
of uncertainty and approximations in the density models, the error is
still significant even with the most accurate ones [29].

The subsequent development is based on the analytical models for
drag and lift coefficients presented in [30] that assume flat plates in a
free molecular flow as

𝐶𝐷,𝑗 ≜
2

𝑠
√

𝜋
exp(−𝑠2 sin2(𝜃𝑖𝑛)) +

sin(𝜃𝑖𝑛)
𝑠2

(1 + 2𝑠2)erf(𝑠 sin(𝜃𝑖𝑛))

+

√

𝜋
𝑠

sin2(𝜃𝑖𝑛)
√

𝑇𝑘,𝑜𝑢𝑡∕𝑇𝑎 (22)

𝐶𝐿,𝑗 ≜
cos(𝜃𝑖𝑛)
𝑠2

erf(𝑠 cos(𝜃𝑖𝑛)) +
1
𝑠
√

𝜋 cos(𝜃𝑖𝑛) sin(𝜃𝑖𝑛)
√

𝑇𝑘,𝑜𝑢𝑡∕𝑇𝑎, (23)

where erf(⋅) represents the error function [31], 𝑠 ≜ ‖𝑽 𝒓‖
√

𝑚∕(2𝑘𝐵𝑇𝑎) ∈
R is an auxiliary variable, 𝑚 ∈ R is the mass of the spacecraft, 𝑘𝐵 ∈ R is
the Boltzmann constant, 𝜃𝑖𝑛 ∈ R is the principal rotation angle between
𝑽 𝒓 and 𝒏𝒋 , and 𝑇𝑎 ∈ R is the ambient atmosphere temperature. The
inetic temperature of reflected particles at the surface 𝑇𝑘,𝑜𝑢𝑡 ∈ R is
efined as

𝑘,𝑜𝑢𝑡 ≜
𝑚
3𝑘𝐵

‖𝑽 𝑟‖
2(1 − 𝛼) + 𝛼𝑇𝑠, (24)

where 𝑇𝑠 ∈ R is the temperature of the surface, and 𝛼 ∈ R is an
ccommodation coefficient that represents the influence of the surface
aterial properties.

The torques produced by aerodynamic drag and lift are given by

𝒌 ≜
4
∑

𝑗=1
𝑅𝑗

×𝑭 𝒌,𝒋 , 𝑘 = 𝐷,𝐿, (25)

where 𝑹𝒋 ≜ 𝒓𝒄 + 𝒓𝒋 , 𝒓𝒄 ≜ [𝑐1 𝑐2 𝑐3]𝑇 ∈ R3 is the uncertain vector
that goes from the spacecraft CoM to the geometric center of the rear
face of the CubeSat (𝑂′), and 𝒓𝒋 ∈ R3 is the vector that goes from 𝑂′

to the center of pressure of the 𝑗𝑡ℎ DMD surface. Given the geometry
and capabilities of the DMD, the vector 𝒓𝒄 also varies with the level of
deployment of the drag surfaces.

3.5. Gravity Gradient Torque

The DMD-equipped CubeSat, considered a rigid body in space,
experiences a gradient of gravitational force along the body with the
greatest attraction on the parts that are closer to the Earth. This gradi-
ent produces the so-called Gravity Gradient Torque (GGT) that depends
on the attitude and inertia properties. The GGT is given by [32]

𝝉𝑮𝑮 ≜
3𝐺𝑀⊕

‖𝑹𝑐‖
5
𝑅𝑐

×𝐽𝑹𝒄 , (26)

where 𝑀⊕ ∈ R>0 is the mass of the Earth, and 𝐺 ∈ R>0 is the universal
gravitational constant.

The GGT can be changed by extending/retracting the DMD surfaces
which directly affect the inertia matrix. A simple model to compute
the variation of the inertia matrix by assuming DMD surfaces that can
be divided as a thick walled cylinder (rolled portion) and a flat plate
(deployed portion) [17], is used to propagate the attitude dynamics for

the numerical simulation in Section 6.
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4. Control design

4.1. Control objective

The objective is to design an adaptive controller for the spacecraft
attitude to track a given time-varying reference 𝒒𝒅 using only the influ-
ence of environmental torques on the spacecraft attitude dynamics as
described in (1). Uncertainties associated with the average atmospheric
density 𝜌 and drag coefficient 𝐶𝐷 have been addressed in previous
work from the authors in [19]. However, assumptions such as perfect
knowledge of the inertia matrix 𝐽 and the location of the CoM 𝒓𝒄 were
made to achieve the control objective along with on-line parameter
estimation. In this work, at the cost of losing the on-line parameter
estimation feature, an augmented vector is proposed to compensate for
the uncertainties.

Although analytical models to compute the variation of the inertia
matrix can be developed, modeling approximations are inherent and
lead to uncertain disturbances. Moreover, modeling deviations in the
CoM location will also result in inaccurately computing levels of de-
ployment for the DMD surfaces to produce the torques required by a
designed control law.

To achieve the proposed control objective, the subsequent control
design will be performed under the following assumptions.

Assumption 2. The spacecraft has the capability of using the compu-
tationally light Harris–Priester model [27] to calculate the atmospheric
density 𝜌𝐻𝑃 ∈ R>0 on-board. The real atmospheric density, whose
behavior is more complex than what is captured by the Harris–Priester
model, is assumed to be approximated by

𝜌 ≜ 𝐵1 + 𝐵2 𝜌𝐻𝑃 , (27)

where 𝐵1, 𝐵2 ∈ R are unknown calibration constants. □

Assumption 3. The spacecraft is capable of approximately computing
its time-varying inertia matrix 𝐽𝑚 ∈ R3×3, provided an on-board sim-
plified analytical model. The actual inertia matrix 𝐽 can be expressed
as

𝐽 = 𝐽𝑚 + 𝛥𝐽, (28)

where 𝛥𝐽 ∈ R3×3 is the mismatch between the actual and modeled
inertia matrix. The inertia mismatch 𝛥𝐽 , as well as its time derivative
𝛥�̇� , are assumed bounded by known constants. Moreover, since the
DMD surfaces are driven by motors with limited velocity, then the rate
of change of the inertia matrix �̇� can also be bounded by a known
constant. □

Assumption 4. The desired quaternion 𝒒𝒅 , desired angular velocity
𝝎𝒅 and its time derivative �̇�𝒅 are known and bounded signals such
that

‖𝒒𝒅‖ ≤ 𝜁1, ‖𝝎𝒅‖ ≤ 𝜁2, ‖�̇�𝒅‖ ≤ 𝜁3, (29)

where 𝜁1, 𝜁2, 𝜁3 ∈ R>0 are known bounding constants. □

ssumption 5. The spacecraft is equipped with an attitude determi-
ation system that provides the controller with measurements of the
ngular velocity 𝝎 and quaternion 𝒒. □

Since the components of 𝒆 satisfy (14), the attitude control objective
can be established as

𝑅 → 3 as 𝑡→ ∞. (30)

Based on (12)–(14), the control objective in (30) can be achieved if

‖𝒆𝒗‖ → 0 ⇒∣ 𝑒0 ∣→ 1. (31)
442
.2. Control development

Let the modified state vector 𝒓 ∈ R3 be defined as

≜ �̃� + 𝛽𝒆𝒗, (32)

here 𝛽 ∈ R3×3 is a symmetric, positive-definite control gain matrix.
aking the time derivative of 𝒓 and pre-multiplying by the inertia
atrix 𝐽 yields

�̇� = 𝝉𝑫 +𝝉𝑳+
3𝐺𝑀⊕

‖𝑹𝒄‖
5
𝑅𝑐

×𝐽𝑹𝒄 +𝜹− �̇�𝝎−𝜔×𝐽𝝎−𝐽 ̇̃𝑅𝝎𝒅 −𝐽𝑅�̇�𝒅 +𝐽𝛽�̇�𝒗.

(33)

Using (15), (17), Assumption 3 and the fact that ̇̃𝑅 = −𝜔×𝑅 yields

𝐽 �̇� = 𝒇 + �̃� +𝑵𝑩 , (34)

where 𝒇 , �̃� , 𝑵𝑩 ∈ R3 are auxiliary variables defined as

𝒇 ≜ 𝝉𝑫 + 𝝉𝑳 +
3𝐺𝑀⊕

‖𝑹𝒄‖
5
𝑅𝑐

×𝐽𝑚𝑹𝒄 − �̇�𝑚𝝎 − 𝜔×𝐽𝑚𝝎

+ 𝐽𝑚𝜔
×𝑅𝝎𝒅 − 𝐽𝑚𝑅�̇�𝒅 + 𝐽𝑚𝛽�̇�𝒗, (35)

�̃� ≜ −𝛥�̇� �̃� − �̃�×𝛥𝐽
(

�̃� + 𝑅𝝎𝒅

)

−
(

𝑅𝝎𝒅

)×
𝛥𝐽 �̃�

+ 𝛥𝐽�̃�×𝑅𝝎𝒅 + 1
2
𝛥𝐽𝛽

(

𝑒𝑣
× + 𝑒03

)

�̃�, (36)

𝑵𝑩 ≜ −𝛥�̇�𝑅𝝎𝒅 −
(

𝑅𝝎𝒅

)×
𝛥𝐽𝑅𝝎𝒅 +

3𝐺𝑀⊕

‖𝑹𝒄‖
5
𝑅𝑐

×𝛥𝐽𝑹𝒄 +𝜹−𝛥𝐽𝑅�̇�𝒅 . (37)

Since �̃� = 𝒓 − 𝛽𝒆𝒗, and considering that ‖𝑹𝒄‖ can be upper bounded
by a known constant. Using Assumptions 3 and 4, �̃� and 𝑵𝑩 can be
upper bounded as

‖�̃�‖ ≤ 𝜎 (‖𝜼‖) ‖𝜼‖, (38)

‖𝑵𝑩‖ ≤ 𝜁4, (39)

where 𝜁4 ∈ R>0 is a known bounding constant, 𝜼 ∈ R6 is an augmented
state vector defined as

𝜼 ≜
[

𝒆𝑇𝒗 𝒓𝑇
]𝑇 , (40)

and 𝜎 ∶ R6 → R is a positive, globally invertible and non-decreasing
function.

To include the adaptation capabilities that compensate for the un-
known parameters, the term 𝒇 that contains only measurable states
and the modeled inertia matrix 𝐽𝑚, can be linearly parameterized with
respect to the unknown parameters. First, consider the contribution of
the 𝑗𝑡ℎ DMD surface to the force due to the aerodynamic drag and lift
𝑭𝑨𝑻 ,𝒋 ∈ R3 which can be expressed using Assumption 2 as

𝑭𝑨𝑻 ,𝒋 ≜ 𝑌𝑗𝜣𝒋 , 𝑗 = 1, 2, 3, 4. (41)

In (41) 𝑌𝑗 ∈ R3×4 are measurable regression matrices defined as

𝑌𝑗 ≜

[

−
𝐿𝑗𝑤𝑏‖𝑽 ⊥,𝒋‖

2

2‖𝑽 𝒓‖
𝑽 𝒓

[

1 𝜌𝐻𝑃
]

,

−
𝐿𝑗𝑤𝑏‖𝑽 ⊥,𝑗‖

2

2

(

𝑽 𝒓
‖𝑽 𝒓‖

× 𝒏𝒋 ×
𝑽 𝒓

‖𝑽 𝒓‖

)

[

1 𝜌𝐻𝑃
]

] (42)

and the vectors 𝜣𝒋 ∈ R4 are

𝜣𝒋 ≜
[

𝐵1𝐶𝐷,𝑗 𝐵2𝐶𝐷,𝑗 𝐵1𝐶𝐿,𝑗 𝐵2𝐶𝐿,𝑗
]𝑇 . (43)

herefore, the total aerodynamic torque 𝝉𝑨𝑻 ,𝒋 ∈ R3 due to the
erodynamic drag and lift in (25) can be rewritten as

𝑨𝑻 ≜ 𝝉𝑫 + 𝝉𝑳 = 𝑟𝑐
×

4
∑

(

𝑌𝑗𝜣𝒋
)

+
4
∑

(

𝑟𝑗
×𝑌𝑗𝜣𝒋

)

. (44)

𝑗=1 𝑗=1
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In (44), the first term can be expressed as

𝑟𝑐
×

4
∑

𝑗=1

(

𝑌𝑗𝜣𝒋
)

=

⎡

⎢

⎢

⎢

⎣

𝟎1×16 𝑌𝑟(3) −𝑌𝑟(2)

−𝑌𝑟(3) 𝟎1×16 𝑌𝑟(1)

𝑌𝑟(2) −𝑌𝑟(1) 𝟎1×16

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝜣𝒓𝑐1
𝜣𝒓𝑐2
𝜣𝒓𝑐3

⎤

⎥

⎥

⎥

⎦

, (45)

here 𝑌𝑟 ∈ R3×16 is a measurable regression matrix defined as

𝑟 ≜
[

𝑌1 𝑌2 𝑌3 𝑌4
]

, (46)

nd 𝑌𝑟(𝑘) denotes the 𝑘𝑡ℎ row of 𝑌𝑟. Similarly, the vector of uncertain
arameters 𝜣𝒓 ∈ R16 is defined as

𝒓 ≜
[

𝜣𝑇
𝟏 𝜣𝑇

𝟐 𝜣𝑇
𝟑 𝜣𝑇

𝟒
]𝑇 . (47)

he second term in (44) can be expressed as

4
∑

𝑗=1

(

𝑟𝑗
×𝑌𝑗𝜣𝒋

)

=
4
∑

𝑗=1

⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎣

𝑌𝑗 (3)𝑟𝑗,2 − 𝑌𝑗 (2)𝑟𝑗,3
𝑌𝑗 (1)𝑟𝑗,3 − 𝑌𝑗 (3)𝑟𝑗,1
𝑌𝑗 (2)𝑟𝑗,1 − 𝑌𝑗 (1)𝑟𝑗,2

⎤

⎥

⎥

⎥

⎦

𝜣𝒋

⎞

⎟

⎟

⎟

⎠

, (48)

here 𝒓𝒋 ≜ [𝑟𝑗,1 𝑟𝑗,2 𝑟𝑗,3]𝑇 is the vector defined in (25), and 𝑌𝑗 (𝑘)
denotes the 𝑘𝑡ℎ row of 𝑌𝑗 . Substituting (45) and (48) into (44) yields

𝝉𝑨𝑻 = 𝑌𝐴𝑇𝜣𝑨𝑻 , (49)

where 𝑌𝐴𝑇 ∈ R3×64 is a measurable regression matrix and 𝜣𝑨𝑻 ∈ R64

s a vector of uncertain parameters, and are defined as

𝑌𝐴𝑇 ≜

⎡

⎢

⎢

⎢

⎣

𝟎1×16 𝑌𝑟(3) −𝑌𝑟(2) 𝑌1(3)𝑟1,2 − 𝑌1(2)𝑟1,3 ⋯ 𝑌4(3)𝑟4,2 − 𝑌4(2)𝑟4,3
−𝑌𝑟(3) 𝟎1×16 𝑌𝑟(1) 𝑌1(1)𝑟1,3 − 𝑌1(3)𝑟1,1 ⋯ 𝑌4(1)𝑟4,3 − 𝑌4(3)𝑟4,1
𝑌𝑟(2) −𝑌𝑟(1) 𝟎1×16 𝑌1(2)𝑟1,1 − 𝑌1(1)𝑟1,2 ⋯ 𝑌4(2)𝑟4,1 − 𝑌4(1)𝑟4,2

⎤

⎥

⎥

⎥

⎦

,

(50)

𝐀𝐓 ≜
[

𝜣𝑇
𝒓 𝑐1 𝜣𝑇

𝒓 𝑐2 𝜣𝑇
𝒓 𝑐3 𝜣𝑇

𝒓
]𝑇 , (51)

espectively. Therefore, (35) can be rewritten as

= 𝑌𝜣, (52)

here 𝑌 ≜
[

𝑌𝐴𝑇
3𝐺𝑀⊕
‖𝑹𝒄‖5

𝑅𝑐×𝐽𝑚𝑹𝒄 − �̇�𝑚𝝎−𝜔×𝐽𝑚𝝎+𝐽𝑚𝜔×𝑅𝝎𝒅 −𝐽𝑚𝑅�̇�𝒅 +

𝐽𝑚𝛽�̇�𝒗
]

∈ R3×65 is the measurable augmented regression matrix, and

𝜣 ≜
[

𝜣𝑇
𝐀𝐓 1

]𝑇
∈ R65 is the augmented vector of uncertain parameters.

Assumption 6. The time-varying vector of uncertain parameters 𝜣
and its time derivative, i.e., �̇�, are bounded by known constants. The
bounds for 𝜣 are given by

𝜣 ≤ 𝜣 ≤ 𝜣, (53)

where 𝜣, 𝜣 ∈ R65 are constant vectors containing the lower and upper
ounds of 𝜣, respectively. □

Define the estimation error �̃� ∈ R65 as

̃ = 𝜣 − �̂�, (54)

where �̂� ∈ R65 is the estimate of 𝜣. Using (52) and (54), and adding
and subtracting the term 𝑌 �̂� to the open-loop error system in (34)
ields

�̇� = 𝑌 �̃� + 𝑌 �̂� + �̃� +𝑵𝑩 . (55)

The regression matrix 𝑌 contains measurable states and is influenced
y the actual inputs (i.e., the DMD surfaces lengths 𝐿1, 𝐿2, 𝐿3, 𝐿4),

while the update law for the estimated vector �̂� will be subsequently
designed. Therefore, the measurable product 𝑌 �̂� can be altered by
modulating the length of the DMD surfaces. This term is designated as
the auxiliary control input �̄� ∈ R3

𝑌 �̂� ≜ �̄�. (56)
443
To facilitate the subsequent stability analysis, let the desired auxiliary
control signal �̄�𝒅 ∈ R3 be designed as

�̄�𝒅 ≜ −𝐾1𝒓 − 𝛽1𝒆𝒗, (57)

where 𝛽1 ∈ R>0 is a positive constant gain, and 𝐾1 ∈ R3×3 is a
onstant, positive-definite control gain matrix. Adding and subtracting
̄𝒅 and substituting (56) and (57) into (55) yields the closed-loop error
ystem

�̇� = 𝑌 �̃� + �̃� +𝑵𝑩 + 𝝌 −𝐾1𝒓 − 𝛽1𝒆𝒗, (58)

here 𝝌 ≜ �̄� − �̄�𝒅 ∈ R3 represents the mismatch between the
esired and the actual auxiliary control inputs. Based on (58), the
radient-based adaptation law is designed as
̇̂ ≜ proj(𝛤𝑌 𝑇 𝒓), (59)

here 𝛤 ∈ R65×65 is a constant, positive-definite adaptation gain ma-
rix, and proj(⋅) denotes the continuous projection algorithm presented
n [33]. Based on the value of (⋅) and the known bounds of �̂�, the

design in ̇̂𝜣 ensures �̂� remains within the known bounded region
without altering the stability of the system nor introducing undesired
discontinuities.

5. Stability analysis

To facilitate the stability analysis, some definitions are introduced.
Let 𝜆1, 𝜆2, 𝜆3, 𝜆4 ∈ R>0 be defined as 𝜆1 ≜ 𝜆min{𝐾1} − 𝜁5 − 1,
𝜆2 ≜ 𝛽1𝜆min{𝛽}, 𝜆3 ≜ min

(

𝜆1, 𝜆2
)

, and 𝜆4 ≜ 𝜆3 −
𝜎2(‖𝜼‖)

2 , respectively,
where 𝛽 is the control gain defined in (32), 𝐾1, 𝛽1 are the control
gains used in (57), 𝜎 (‖𝜼‖) is the function defined in (38), 𝜁5 ∈ R>0 is a
nown bounding constant, and 𝜆min{⋅} ∈ R is the minimum eigenvalue
f {⋅}. Let the set  be defined as  ≜

{

𝜼 |

|

|

‖𝜼‖ < 𝜎−1
(

√

2𝜆3
)}

, and
let  ⊂  be defined as

 ≜
{

𝜼 ∈  |

|

|

‖𝜼‖ < 𝛬
}

, (60)

where 𝛬 ≜
√

𝜆
�̄�

(

𝜎−1
(

√

2𝜆3
))2

−
𝜁−𝜁
�̄� , and 𝜆, �̄�, 𝜁 , 𝜁 ∈ R>0 are known

bounding constants.

Theorem. Consider the spacecraft attitude dynamics governed by the non-
linear system in (1) with Assumptions 1–5. The auxiliary controller in (57)
and the adaptive update law in (59) ensure uniformly ultimately bounded
attitude tracking in the sense that

‖𝒆𝒗‖ ≤ 𝜖1exp
{

−𝜖2𝑡
}

+ 𝜖3, (61)

where 𝜖1 ≜
√

�̄�‖𝜼(0)‖2+𝜁
𝜆 ∈ R>0, 𝜖2 ≜ 𝜆4

2�̄� ∈ R>0, 𝜖3 ≜
√

�̄�
𝜆4𝜆

𝜁8 +
𝜁−𝜁
𝜆 ∈

R>0, 𝜁8 ≜ 𝜁6 + (𝜁4+𝜁7)2
2 ∈ R>0, and 𝜁6, 𝜁7 ∈ R>0 are known bounding

onstants. Provided that 𝜼(0) ∈  is satisfied, and that the control gains
re selected sufficiently large such that 𝜆1 > 0, and 𝛬 > 𝜖3.

roof. Let 𝑉 ∈ R≥0 be a candidate Lyapunov function defined as

(𝑡) ≜ 1
2
𝒓𝑇 𝐽𝒓 + 𝛽1𝒆𝑇𝒗 𝒆𝒗 + 𝛽1(1 − 𝑒0)

2 + 1
2
�̃�
𝑇
𝛤−1�̃�. (62)

The Lyapunov function can be upper and lower bounded as

𝜆‖𝜼‖2 + 𝜁 ≤ 𝑉 (𝑡) ≤ �̄�‖𝜼‖2 + 𝜁. (63)

Substituting (15), (16), (32), (54) and (58) into the time derivative of
(62), and using the fact that 𝒆𝑇𝒗 𝑒𝑣

×�̃� = 0, yields

�̇� (𝑡) = 𝒓𝑇
(

𝑌 �̃� + �̃� +𝑵𝑩 + 𝝌 −𝐾1𝒓
)

+ 1
2
𝒓𝑇 �̇�𝒓

− 𝛽1𝒆𝑇𝒗 𝛽𝒆𝒗 + �̃�
𝑇
𝛤−1�̇� − �̃�

𝑇
𝛤−1 ̇̂𝜣.

(64)

Substituting the adaptive update law in (59) into (64), yields

�̇� (𝑡) = 𝒓𝑇 �̃� + 𝒓𝑇𝑵 + 𝒓𝑇 𝜒 − 𝒓𝑇𝐾 𝒓− 𝛽 𝒆𝑇 𝛽𝒆 + 1 𝒓𝑇 �̇�𝒓+ �̃�
𝑇
𝛤−1�̇�. (65)
𝑩 1 1 𝒗 𝒗 2
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In (64), the last two terms can be upper bounded using Assumptions 3
and 6 as

1
2
𝒓𝑇 �̇�𝒓 ≤ 𝜁5‖𝒓‖2, (66)

�̃�
𝑇
𝛤−1�̇� ≤ 𝜁6. (67)

Using (38), (39), (66) and (67), (65) can be upper bounded as

�̇� (𝑡) ≤ −
(

𝜆min{𝐾1} − 𝜁5
)

‖𝒓‖2 − 𝛽1𝜆min{𝛽}‖𝒆𝒗‖2 + 𝜎(‖𝜼‖)‖𝜼‖‖𝒓‖

+
(

𝜁4 + ‖𝝌‖
)

‖𝒓‖ + 𝜁6. (68)

Assumption 7. A numerical optimization algorithm can be used to
find a suitable set of DMD surface lengths (i.e., 𝐿1, 𝐿2, 𝐿3 and 𝐿4)
that minimizes ‖𝝌‖, and the resulting 𝝌 can be upper bounded by a
constant for the entire maneuver such that ‖𝝌‖ ≤ 𝜁7. □

Using Young’s inequality on the term 𝜎(‖𝜼‖)‖𝜼‖‖𝒓‖ yields 𝜎(‖𝜼‖)
‖𝜼‖‖𝒓‖ ≤ 𝜎2(‖𝜼‖)‖𝜼‖2

2 + 1
2‖𝒓‖

2. Similarly, the inequality
(

𝜁4 + ‖𝝌‖
)

‖𝒓‖ ≤
1
2‖𝒓‖

2 + (𝜁4+𝜁7)2
2 can be obtained using Assumption 7. Therefore, (68)

can be rewritten as

�̇� (𝑡) ≤ −𝜆1‖𝒓‖2 − 𝜆2‖𝒆𝒗‖2 +
𝜎2(‖𝜼‖)‖𝜼‖2

2
+ 𝜁8. (69)

The expression in (69) can be further upper bounded as

�̇� (𝑡) ≤ −
(

𝜆3 −
𝜎2(‖𝜼‖)

2

)

‖𝜼‖2 + 𝜁8. (70)

rovided 𝜼 ∈ , then (70) can be rewritten as

̇ (𝑡) ≤ −𝜆4‖𝜼‖2 + 𝜁8 ∀𝜼 ∈ . (71)

sing the bounds in (63), (71) can be rewritten as

̇ (𝑡) ≤ −
𝜆4
𝜆
𝑉 (𝑡) + 𝜖0, (72)

where 𝜖0 ≜ 𝜁8 +
𝜆4𝜁
𝜆

. By invoking the Comparison Lemma from [34],
the solution to (72) can be obtained as

𝑉 (𝑡) ≤ exp
{

−
𝜆4
𝜆
𝑡
}

𝑉 (0) + 𝜆
𝜆4
𝜖0

(

1 − exp
{

−
𝜆4
𝜆
𝑡
})

. (73)

Using (63) and (73) yields

‖𝜼‖2 ≤

(

𝜆‖𝜼(0)‖2 + 𝜁
𝜆

)

exp
{

−
𝜆4
𝜆
𝑡
}

+
⎛

⎜

⎜

⎝

𝜆
𝜆4𝜆

𝜁8 +
𝜁 − 𝜁

𝜆

⎞

⎟

⎟

⎠

. (74)

sing (40) and (74) yields the uniformly ultimately bounded result
n (61) provided 𝜼(0) ∈ , where uniformity in initial time can be
oncluded from the independence of 𝜆3 and the ultimate bound from
3 at time 𝑡 = 0. From (62), (63) and (73), then 𝒓 ∈ ∞. Then, from
17) and (32), 𝝎 ∈ ∞. Similarly, from (15) and (16), �̇�𝒗, �̇�0 ∈ ∞.
ince 𝒓, 𝝎 ∈ ∞, and 𝒆𝑣, 𝑒0, 𝝎𝒅 ∈ ∞ by definition, then �̄�𝒅 ∈ ∞ by
57). Since �̂� ∈ ∞ by (59), �̄�𝒅 ∈ ∞, and 𝝌 ∈ ∞ by Assumption 7,
herefore 𝑌 ∈ ∞ using (56). ■

. Simulation results

The simulations presented in this section are performed using the
th order Runge–Kutta fixed-step algorithm to propagate the orbital
nd attitude dynamics. The first simulation, in Section 6.1, illustrates
he performance of the controller when required to achieve a fixed
rientation relative to the orbital frame (regulation maneuver). The
econd simulation, in Section 6.2, presents the result obtained using the
ontroller to track a time-varying reference relative to the orbital frame
tracking maneuver). Effects of aerodynamic drag and lift, gravity
radient torque and 𝐽2 perturbation are included in the spacecraft
ynamics. The NRLMSISE-00 atmospheric model is used as the true
unknown for the controller) atmospheric density. The control law in
57) is computed every 30 s to allow finding a suitable set of DMD
444
Table 1
Initial orbital parameters for simulation of regulation
and tracking maneuvers.
Parameter Value

Semi-Major Axis [m] 6778 × 103

Eccentricity 0
Inclination [deg] 51.94
RAAN [deg] 206.26
Arg. of Perigee [deg] 101.07
True Anomaly [deg] 108.08

Table 2
Spacecraft parameters for simulation of regulation and
tracking maneuvers.
Parameter Value

CubeSat Body Mass [kg] 3
DMD Surface Mass [kg] 9 × 10−2

Max. DMD Surface Length [m] 3.7
DMD Surface Width [m] 3.8 × 10−2

Table 3
Initial Euler angles and angle rates for simulation of
regulation and tracking maneuvers.
Parameter Value

𝜙0 [deg] 45
𝜃0 [deg] −60
𝜓0 [deg] 50
�̇�0 [deg∕s] 5 × 10−2

�̇�0 [deg∕s] −7.5 × 10−2

�̇�0 [deg∕s] 6 × 10−2

surfaces lengths through the formulation of a constrained function
minimization problem that minimizes ‖𝝌‖, and includes the physical
length constraints of the DMD surfaces. The MATLAB fmincon command
is used to solve the minimization problem

min
𝐿1 ,𝐿2 ,𝐿3 ,𝐿4

‖𝑌 �̂� − �̄�𝒅‖ subject to
{

0 ≤ 𝐿𝑗 ≤ 3.7, 𝑗 = 1, 2, 3, 4. (75)

The spacecraft is simulated in a circular orbit with inclination of
1.94 degrees and 400 km altitude, similar to that of the International

Space Station (ISS). The initial orbital elements and spacecraft param-
eters are presented in Tables 1 and 2, respectively. Additionally, the
simulations also incorporate modeling inaccuracies in the CoM location
and inertia matrix. For visualization purposes, in the subsequent sim-
ulation results, the orientation of the body with respect to the orbital
frame is expressed using a 3-2-1 Euler angle sequence, where 𝜙, 𝜃
nd 𝜓 denote the roll, pitch and yaw angles, respectively (see [17] for

details). The roll, pitch and yaw angles correspond to rotations about
�̂�𝟏, �̂�𝟐 and �̂�𝟑, respectively. Simulation parameters, initial conditions
and uncertainties are the same for both simulation examples. The initial
conditions (𝜙0, 𝜃0, 𝜓0) are presented in Table 3.

6.1. Regulation maneuver

To propagate the spacecraft dynamics, a model to compute the
inertia matrix 𝐽𝑚 as function of the DMD-surfaces lengths is used.
Specifically, 𝐽𝑚 is computed by representing a 2U CubeSat struc-
ture as a rectangular box, and the rolled and deployed portions of
a DMD-surface are modeled as a thick walled cylinder and a flat
plate, respectively. The inaccuracy of 𝐽𝑚 is introduced by incorporating
deviations in the mass for each part of the spacecraft and the assumed
locations of their individual CoMs are shown in Table 4.

The objective for this maneuver is to achieve a fixed orientation
of the spacecraft with respect to the orbital frame. The controller
parameters are shown in Table 5, and the desired Euler angles are
presented in Table 6. Figs. 3 and 4 show the resulting quaternion error
components and the corresponding transformation to Euler angles for
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Table 4
Uncertainties included in simulation to compute 𝐽𝑚. CoMs expressed in coor-
dinate systems centered at the geometric center of the body of interest, where
𝑗 = 1, 2, 3, 4.
Parameter Real (for 𝐽 ) Approx. (for 𝐽𝑚)

CoM CubeSat Body [cm] [0 0 0]𝑇 [1.8 2 − 3]𝑇

CoM Flat Plate (×10−2) [m] [0 0 0]𝑇 [4.5𝐿2
𝑗 0 0]𝑇

Deployer mass [g] 89.88 75

Table 5
Controller parameters used for simulation of regulation and tracking
maneuvers.
Parameter Value

𝐾1 (×10−3) diag(3, 3, 3)
𝛽

(

×10−3
)

diag(1.5, 5, 5)
𝛽1

(

×10−6
)

3.2
𝛤 diag

(

𝛤2 , 𝛤2 , 𝛤2 , 𝛤2 , 6𝛤2 , 6𝛤2 , 𝛤1 , 𝛤1 , 10−20
)

𝛤1
(

×10−19
)

diag
(

1, 1011 , 1, 1011 , 1, 1011 , 1, 1011
)

𝛤2
(

×10−22
)

diag
(

2, 211 , 2, 211 , 2, 211 , 2, 211
)

Table 6
Desired orientation of the spacecraft with respect to
the orbital frame for the regulation maneuver.
𝜙𝑑 [deg] 𝜃𝑑 [deg] 𝜓𝑑 [deg]

45 0 10

a 10 h simulation, respectively. The results show that the regulation
objective was achieved with ultimate bounds for roll, pitch and yaw
within ±3, ±2 and ±2.2 degrees, respectively.

As concluded in the stability analysis, the resulting ultimate bound
can be attributed to the size of the disturbance torques in 𝜹, the
residual error 𝝌 , the unmodeled effects of the DMD on the inertia
matrix, and the rate of change of the uncertain parameters (i.e., �̇�).
Therefore, efforts on improving the knowledge of the inertia matrix,
using a good numerical algorithm to solve for the lengths and avoiding
high deployment rates, would have direct influence on reducing the
ultimate bounds.

The levels of deployment for the DMD surfaces are shown in Fig. 5.
Actuator saturation was applied to account for the physical limits of
the DMD surfaces. Although this saturation was not explicitly modeled
in the controller design, the controller has shown to be robust enough
to regulate the orientation despite the physical actuator limits. In an
effort to reduce the influence of rapid variations of the control inputs,
a low-pass filter with cutoff frequency 𝜔𝑐 ≜ 0.017 Hz has been applied
to the lengths calculated by the fmincon algorithm and the maximum
deployment rate among all DMD surfaces for this maneuver was 2.9
meters per minute. The norm of the resulting mismatch between �̄�
and �̄�𝒅 (i.e., ‖𝝌‖) is shown in Fig. 6. Due to the amplitude limitations
of the environmental torques, the actuators reached their saturation
limits multiple times during approximately the first five hours of the
maneuver. However, after the period of saturation, ‖𝝌‖ remained
below 1 × 10−6 Nm.

The estimated parameters in �̂� are shown in Figs. 7 and 8 for the
parameters associated with the aerodynamic drag and in Figs. 9 and
10 for the parameters associated with the aerodynamic lift. The estima-
tions are divided into four plots to better observe their variation over
time because of their different orders of magnitude. From the stability
analysis, it cannot be concluded that the estimation error �̃� converges
to zero, meaning that there is no on-line parameter estimation. How-
ever, the results show that all parameters are dynamically adjusted
to compensate for the environmental and physical uncertainties and
remain bounded.

For the specific spacecraft and orbit considered in the regulation ex-
ample, a feasible range of operation including saturation of the control
inputs is determined by performing a set of 1000 five-hour simulations
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Fig. 3. Resulting error quaternion for the regulation maneuver using the designed
controller.

Fig. 4. Resulting Euler angles for the regulation maneuver using the designed
controller.

Fig. 5. Required level of deployment for the DMD surfaces using the designed
controller for the regulation maneuver.
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𝑐

Fig. 6. Resulting mismatch ‖𝝌‖ obtained using MATLAB fmincon to solve for the DMD
surfaces lengths for the regulation maneuver.

Fig. 7. Resulting parameter estimates 𝐵1𝐶𝐷,𝑗 in �̂� with 𝑗 = 1, 2, 3, 4 associated with
the aerodynamic drag for the regulation maneuver using the designed controller.

Fig. 8. Resulting parameter estimates
[

𝑐1𝐵1𝐶𝐷,𝑗 , 𝑐1𝐵2𝐶𝐷,𝑗 , 𝑐2𝐵1𝐶𝐷,𝑗 , 𝑐2𝐵2𝐶𝐷,𝑗 ,

𝑐3𝐵1𝐶𝐷,𝑗 , 𝑐3𝐵2𝐶𝐷,𝑗
]𝑇

in �̂� with 𝑗 = 1, 2, 3, 4 associated with the aerodynamic drag
for the regulation maneuver using the designed controller.
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Fig. 9. Resulting parameter estimates 𝐵1𝐶𝐿,𝑗 in �̂� with 𝑗 = 1, 2, 3, 4 associated with
the aerodynamic lift for the regulation maneuver using the designed controller.

Fig. 10. Resulting parameter estimates
[

𝑐1𝐵1𝐶𝐿,𝑗 , 𝑐1𝐵2𝐶𝐿,𝑗 , 𝑐2𝐵1𝐶𝐿,𝑗 , 𝑐2𝐵2𝐶𝐿,𝑗 ,

̂3𝐵1𝐶𝐿,𝑗 , 𝑐3𝐵2𝐶𝐿,𝑗
]𝑇

in �̂� with 𝑗 = 1, 2, 3, 4 associated with the aerodynamic lift for the
regulation maneuver using the designed controller.

of regulation maneuvers. The initial conditions and the desired Euler
angles are randomly initialized as shown in Table 7. The set of possible
desired Euler angles has been selected so that the operational range
for a more demanding mission as compared to the previous example
is considered (e.g., pointing a camera on the ram/anti-ram face of the
spacecraft to a given objective).

To point the �̂�𝟏 body axis toward any direction inside a cone of
limited size with respect to the along-track direction �̂�𝟏, it is sufficient
to vary the desired roll and yaw angles. The size of the cone is driven
by the bounds of the yaw angle and all directions inside the cone are
explored by varying the roll angle. For all simulations, the spacecraft
is considered stabilized if ‖𝒆𝒗‖ ≤ 0.4 (user-defined) on average during
the last 20 min of the maneuver, which was found representative for
successful maneuvers considering the ultimately bounded result from
the stability analysis. Fig. 11 presents the percentage of stabilized
maneuvers with different limits for the norm of the yaw angle ‖𝜓‖
(i.e., cone sizes). Fig. 12 illustrates the difference in size between cones
resulting from yaw bounds of ±8 and ±25 degrees, with percentages
of success of 80% and 70%, respectively. The remaining percentage of
failure can be attributed to several factors including the limitations due
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Table 7
Parameter ranges for the set of 1000 five-hour
simulations.
Parameter Range

𝜙0 , 𝜃0 , 𝜓0 [deg] [−10, 10]
�̇�0 , �̇�0 , �̇�0 [deg/s] [−0.02, 0.02]
𝜙𝑑 [deg] [−180, 180]
𝜃𝑑 [deg] 0
𝜓𝑑 [deg] [−25, 25]

Fig. 11. Resulting percentage of successful regulation maneuvers vs. size of the cone.

Fig. 12. Resulting feasible range of operation, 8 degrees (80%), 25 degrees (70%).

to the DMD geometry, initial conditions, and variations of atmospheric
density, among others.

6.2. Tracking maneuver

The simulation presented in this subsection illustrates a scenario
where the CubeSat is required to change its orientation with respect
to the orbital frame over time. This task could be required for missions
where the spacecraft needs to adjust its orientation for pointing a sensor
(e.g., a camera) toward different areas during the mission. The scenario
considers a spacecraft that is required to track a desired trajectory of
the roll angle while keeping the pitch and yaw angles fixed. The initial
conditions and control parameters are the same used for the regulation
maneuver, and the desired Euler angles are presented in Table 8.
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Table 8
Desired orientation of the spacecraft with respect to
the orbital frame for the tracking maneuver.
𝜙𝑑 [deg] 𝜃𝑑 [deg] 𝜓𝑑 [deg]

35 + 15 sin(4.36 × 10−4𝑡) 0 0

Fig. 13. Resulting error quaternion for the tracking maneuver using the designed
controller.

Figs. 13 and 14 show the resulting quaternion error components and
the corresponding transformation to Euler angles for a 10 h simulation.
These results show that the CubeSat orientation reaches the ultimate
bound in approximately 5 h. The ultimate bounds for roll, pitch and
yaw are ±3, ± 1.5 and ±3 degrees, respectively.

The resulting lengths of the DMD are shown in Fig. 15, where
saturation to account for the physical constraints was applied. The DMD
surfaces reached their saturation levels multiple times during the first
two hours of the simulation, and the controller has shown to be robust
during that portion of the maneuver. The maximum deployment rate
among all DMD surfaces for the tracking maneuver was 2.6 meters per
minute. Fig. 16 shows the norm of the mismatch between �̄� and �̄�𝒅
(i.e., ‖𝝌‖), after the period of saturation, it remained below 8.9 × 10−7

Nm.
The estimated parameters in �̂� are shown in Figs. 17 and 18 for

parameters associated with the aerodynamic drag and in Figs. 19 and
20 for those associated with the aerodynamic lift. All the estimations
remain bounded and are dynamically adjusted to compensate for the
uncertainties but on-line estimation cannot be guaranteed.

To illustrate the approach taken to evaluate the effect that the
applied torques may have on the long DMD surfaces, a comparison be-
tween the frequency content of the applied torque and the first natural
frequencies of a DMD surface was performed for the tracking maneuver.
A fully deployed DMD surface was modeled as a cantilevered beam
and the first natural frequencies were computed using SolidWorks.
Fig. 21 illustrates the first five mode shapes and their corresponding
frequencies, and Fig. 22 shows the Fast Fourier Transform (FFT) of
each component of the applied torque. From these figures, the range of
frequencies of the applied torques is reasonably below the first natural
frequency of the DMD surface (i.e., 0.1396 Hz).

7. Conclusion

This paper presented the design and validation through numerical
simulation of an adaptive controller for environmental torques-based
attitude control that compensates for uncertainties in the atmospheric
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𝑐

Fig. 14. Resulting Euler angles for the tracking maneuver using the designed controller.

Fig. 15. Required level of deployment for the DMD surfaces using the designed
controller for the tracking maneuver.

Fig. 16. Resulting mismatch ‖𝝌‖ obtained using MATLAB fmincon to solve for the
DMD surfaces lengths for the tracking maneuver.
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Fig. 17. Resulting parameter estimates 𝐵1𝐶𝐷,𝑗 in �̂� with 𝑗 = 1, 2, 3, 4 associated with
the aerodynamic drag for the tracking maneuver using the designed controller.

Fig. 18. Resulting parameter estimates
[

𝑐1𝐵1𝐶𝐷,𝑗 , 𝑐1𝐵2𝐶𝐷,𝑗 , 𝑐2𝐵1𝐶𝐷,𝑗 ,

̂2𝐵2𝐶𝐷,𝑗 , 𝑐3𝐵1𝐶𝐷,𝑗 , 𝑐3𝐵2𝐶𝐷,𝑗
]𝑇

in �̂� with 𝑗 = 1, 2, 3, 4 associated with the
aerodynamic drag for the tracking maneuver using the designed controller.

Fig. 19. Resulting parameter estimates 𝐵1𝐶𝐿,𝑗 in �̂� with 𝑗 = 1, 2, 3, 4 associated with
the aerodynamic lift for the tracking maneuver using the designed controller.
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Fig. 20. Resulting parameter estimates
[

𝑐1𝐵1𝐶𝐿,𝑗 , 𝑐1𝐵2𝐶𝐿,𝑗 , 𝑐2𝐵1𝐶𝐿,𝑗 , 𝑐2𝐵2𝐶𝐿,𝑗 ,

𝑐3𝐵1𝐶𝐿,𝑗 , 𝑐3𝐵2𝐶𝐿,𝑗
]𝑇

in �̂� with 𝑗 = 1, 2, 3, 4 associated with the aerodynamic lift for
the tracking maneuver using the designed controller.

Fig. 21. First natural frequencies of a fully deployed DMD surface.

Fig. 22. FFT of the torque 𝑌 �̂� applied during the tracking maneuver.
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density, drag and lift coefficients, and center of mass location. More-
over, the controller also considers perturbations associated with the
non-modeled behavior of the inertia matrix. The obtained result ensures
the alignment of the body and orbital frames within ultimate bounds.
Simulation results including aerodynamic and gravity gradient torques,
actuator saturation, as well as the NRLMSISE-00 model for atmospheric
density and 𝐽2 perturbation, were performed to validate regulation
and tracking of the angles to their desired values relative to the orbital
frame within bounds of ±3 deg. Therefore, the controller shows
potential for applications where the location of the center of mass,
atmospheric density, drag coefficients are uncertain and the inertia
matrix cannot be accurately computed in real time. Future work on this
problem will consider strategies to address implementation challenges
such as failures to deploy a DMD surface.
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